

ФЕДЕРАЛЬНОЕ АГЕН**Т**СТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.28.001.A № 51277

Срок действия до 25 июня 2018 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ **Динамометры электронные на растяжение**, сжатие и универсальные ТМ

ИЗГОТОВИТЕЛЬ

Закрытое акционерное общество "Весоизмерительная компания "Тензо-М" (ЗАО "ВИК "Тензо-М"), п.Красково Московской обл.

РЕГИСТРАЦИОННЫЙ № 53968-13

ДОКУМЕНТ НА ПОВЕРКУ **МП 2301-249-2013**

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 25 июня 2013 г. № 622

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя			
Федерального агентства			

Ф.В.Булыгин

"...... 2013 г.

Nº 010407

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Динамометры электронные на растяжение, сжатие и универсальные ТМ

Назначение средства измерений

Динамометры электронные на растяжение, сжатие и универсальные TM (далее - динамометры) предназначены для измерений статических сил растяжения и сжатия.

Описание средства измерений

Динамометр состоит из датчика силоизмерительного тензорезисторного (далее – датчик) с силовводящими элементами, вторичного измерительного преобразователя с цифровым отсчетным устройством (далее – преобразователь), соединительного кабеля и кабеля питания. Датчик силоизмерительный соединен с вторичным измерительным преобразователем соединительным кабелем. Датчик силоизмерительный состоит из упругого элемента и силовводящих элементов. Силовводящие элементы обеспечивают условия силовведения и монтажа динамометра.

Принцип действия динамометров состоит в том, что под действием приложенной силы происходит деформация упругого элемента датчика, на котором наклеен тензорезисторный мост. Деформация упругого элемента вызывает разбаланс тензорезисторного моста. Электрический сигнал разбаланса моста поступает в преобразователь для аналого-цифрового преобразования, обработки и индикации результатов измерений.

Преобразователь имеет интерфейс RS 232/485 для подключения динамометра к персональному компьютеру.

Модификации динамометров отличаются метрологическими характеристиками, видом измеряемой силы, типом преобразователя (рис. 1–3), формой упругого элемента датчика (рис. 4-6) и имеют обозначение TM(X)–H/K, где:

ТМ – обозначение типа:

X – вид измеряемой силы (P – растяжение, C – сжатие, Y – универсальный);

Н – наибольший предел измерений, кН (см. таблицу 3);

 \mathbf{K} – класс точности по ГОСТ Р 55223-2012 (00; 0,5; 1; 2).

Рисунок 1 – Внешний вид преобразователя ТВ-015НД.

Рисунок 2 – Внешний вид преобразователя ТВ-003П.

Рисунок 3 – Внешний вид преобразователя ТВ-014.

Рисунок 4 – Внешний вид упругих элементов датчиков динамометров сжатия ТМ(С)

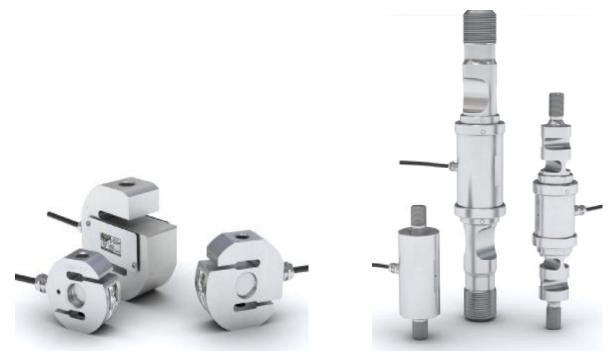


Рисунок 5 – Внешний вид упругих элементов датчиков динамометров универсальных TM(У)

Рисунок 6 – Внешний вид упругих элементов датчиков динамометров растяжения TM(P)

Рисунок 7 – Место пломбировки от несанкционированного доступа на преобразователе ТВ-014.

Маркировка динамометра выполнена в виде пластиковой наклейки, закрепленной на передней панели преобразователя и на упругом элементе, на которой нанесены следующие данные:

- наименование предприятия-изготовителя;
- обозначение динамометра;
- заводской номер;
- значение наименьшего предела измерения;
- значение наибольшего предела измерения;
- дискретность отсчетного устройства;
- год выпуска;
- знак утверждения типа.

Программное обеспечение

В динамометрах используется встроенное в преобразователь программное обеспечение (ПО). Программное обеспечение выполняет функции по сбору, передаче, обработке и предоставлению измерительной информации. Для предотвращения несанкционированного доступа, у преобразователей ТВ-014 в пластиковом корпусе используется кнопка внутри корпуса преобразователя, доступ к которой пломбируется (рис. 7). Остальные преобразователи защищены административным паролем и электронным клеймом — случайно генерируемым числом, которое автоматически обновляется после каждой юстировки. Цифровое значение электронного клейма заносится в раздел «Поверка» паспорта и подтверждается оттиском поверительного клейма.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1

	IA vormy dyyra	Номер версии	Цифровой идентифи-	Алгоритм вычис-
Наименование	Идентифика-	(идентифика-	катор ПО (контрольная	ления цифрового
ПО	ционное на-	ционный но-	сумма исполняемого	идентификатора
	именование ПО	мер) ПО	кода)	ПО
Пуууал сал салга	ТВ-015НД	12.H		
Динамометр	ТВ-003П	C.4.214	*	*
электронный	TB-014	C.16		
Примечание:				
y TC			1 1	ПО

* Конструкция динамометра не допускает вычисление цифрового идентификатора ПО.

Идентификация программы: номер версии программного обеспечения отображается на дисплее преобразователя при включении динамометра, при помощи специальных команд описанных в Руководстве по эксплуатации на преобразователях ТВ-015НД и ТВ-003П возможно отразить цифровое значение электронного клейма.

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Влияние программного обеспечения на метрологические характеристики учтено при нормировании метрологических характеристик.

Метрологические и технические характеристики

Пределы допускаемой относительной погрешности динамометров и предельные значения составляющих погрешности, связанных с воспроизводимостью показаний b, повторяемостью показаний b¢ интерполяцией f_c , дрейфом нуля f_0 , гистерезисом v и ползучестью c в зависимости от класса точности приведены в таблице 2.

Таблица 2

Класс точности	Предельные значения, %						
	допускаемой относи- тельной погрешности	b	b¢	f_c	f_0	ν	С
00	± 0,06	0,05	0,025	± 0,025	$\pm 0,012$	0,07	0,025
0,5	± 0,12	0,10	0,05	± 0,05	$\pm 0,025$	0,15	0,05
1	± 0,24	0,20	0,10	± 0,10	$\pm 0,050$	0,30	0,10
2	± 0,45	0,40	0,20	± 0,20	$\pm 0,10$	0,50	0,20
Примечание: Динамометры ТМС-2000 выпускаются только классов точности 1 и 2							

Наибольшие пределы измерений, масса и габаритные размеры упругих элементов датчиков приведены в таблице 3.

Таблица 3

	II	Масса упругих	Габаритн	ые размеры		таолица <i>з</i> пементов
Модифи-	Наибольший пре- дел измерений	элементов дат-	датчиков, мм, не бол			
кация	дел измерении (НПИ), кН	чиков, кг, не бо- лее	длина	ширина	высота	диаметр
1	2	3	4	5	6	7
TMP-1	1	1,0	80	40	80	_
TMP-2	2	1,0	80	40	80	_
TMP-5	5	1,0	80	40	80	_
TMP-10	10	1,4	95	40	90	_
TMP-20	20	1,4	100	40	95	_
TMP-30	30	4,0	120	60	120	_
TMP-50	50	4,0	120	75	250	_
TMP-70	70	5,0	120	80	250	_
TMP-100	100	9,5	140	140	450	_
TMP-200	200	11	160	140	450	_
TMP-300	300	11	_	_	450	125
TMP-500	500	13	_	_	760	130
TMP-1000	1000	17	_	_	760	130
TMC-1	1	1,0	_	_	30	100
TMC-2	2	1,0	_	_	30	100
TMC-5	5	1,5	_	_	50	100
TMC-10	10	1,5	_	_	50	100
TMC-20	20	2,0	_	_	50	100
TMC-50	50	3,0	_	_	90	100
TMC-100	100	4,0	_	_	150	75
TMC-150	150	4,0	_	_	150	75
TMC-200	200	4,5	-	_	150	75
TMC-250	250	4,5	_	_	150	75
TMC-300	300	4,5	_	_	150	75
TMC-500	500	4,5	_	_	150	75
TMC-1000	1000	6,0	_	_	180	105
TMC-2000	2000	7,5	_	_	150	110
ТМУ-1	1	1,0	80	40	80	_
ТМУ-2	2	1,0	80	40	80	_
ТМУ-5	5	1,0	80	40	80	_
ТМУ-10	10	1,5	95	40	90	_
ТМУ-20	20	1,5	100	40	95	_

Продолжение	таблицы	3
-------------	---------	---

1	2	3	4	5	6	7
ТМУ-30	30	4,0	120	60	120	_
ТМУ-50	50	4,0	120	60	120	_
ТМУ-70	70	4,0	120	60	120	_
ТМУ-100	100	9,5	140	85	140	_
ТМУ-200	200	11	160	85	160	_

Габаритные размеры преобразователя, мм	
(длина, ширина, высота), не более	85, 50
Масса преобразователя, кг, не более	2,5
Питание динамометров осуществляется от сети переменного тока с параметрами:	
- напряжение, В от 187 д	
- частота, Гц от 49	
- потребляемая мощность, Вт, не более	10
Условия эксплуатации:	
- область нормальных значений	
температуры окружающего воздуха, °С от + 15 до	0 + 35
- область нормальных значений относительной влажности, % от 45	до 85
Вероятность безотказной работы за 1000 часов	0,9

Знак утверждения типа

Знак утверждения типа наносится типографским способом на эксплуатационную документацию и термосублимационным способом на маркировочные таблички, размещенные на передней панели преобразователя и на упругом элементе.

Комплектность средства измерений

Наименование	Количество
Динамометр	1 шт.
Паспорт 4273-063-18217119-2006 ПС	1 экз.
Руководство по эксплуатации 4273-063-18217119-2006 РЭ	1 экз.
Методика поверки МП 2301-249-2013	1 экз.

Поверка

осуществляется по документу МП 2301-249-2013 «Динамометры электронные на растяжение, сжатие и универсальные ТМ. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» $12.04.2013~\Gamma$.

Основные средства поверки: машины силовоспроизводящие 1-го разряда по ГОСТ Р 8.663-2009.

Сведения о методиках (методах) измерений

изложены в разделе 2 «Использование по назначению» руководства по эксплуатации «Динамометры электронные на растяжение, сжатие и универсальные ТМ. Руководство по эксплуатации» 4273-063-18217119-2006 РЭ.

Нормативные и технические документы, устанавливающие требования к динамометрам электронным на растяжение, сжатие и универсальные TM

- 1. ГОСТ Р 55223-2012 Динамометры. Общие метрологические и технические требования.
- 2. ГОСТ Р 8.663-2009 ГСИ. Государственная поверочная схема для средств измерений силы.

2013 г.

3. ТУ 4273-063-18217119-2006 Динамометры электронные на растяжение, сжатие и универсальные ТМ. Технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Закрытое акционерное общество «Весоизмерительная компания «Тензо-М» (ЗАО «ВИК «Тензо-М»),

Адрес: Россия, 140050, Московская область, Люберецкий р-н, п. Красково, ул. Вокзальная, 38. Тел/факс +7 (495) 745-3030.

E-mail: tenso@tenso-m.ru
Http: www.tenso-m.ru

Испытательный центр

ГЦИ СИ ФГУП «ВНИЙМ им. Д.И. Менделеева», регистрационный номер 30001-10.

Адрес: 190005, Санкт-Петербург, Московский пр., 19

Тел. (812) 251-76-01, факс (812) 713-01-14, e-mail: <u>info@vniim.ru</u>, <u>http://www.vniim.ru</u>

Заместитель	
Руководителя Федерального	
агентства по техническому	
регулированию и метрологии	Ф.В. Булыгин

М.п.